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Abstract - This paper presents a 
lightweight, resource-efficient solution for 
reinforcing positive canine behavioral 
training using neural networks optimized 
for constrained platforms like smartphones. 
Building on prior work utilizing 
GPU-accelerated devices such as the 
Jetson Nano, we extend the approach by 
leveraging EfficientNetV2 pre-trained 
models, transfer learning, and compression 
techniques, including pruning and 
quantization, to achieve comparable 
performance using fewer resources. The 
system classifies canine behaviors (sit, 
stand, and lie) with a test accuracy of nearly 
92% and a model's size reduced by the 
same percentage relative to its 
pre-compressed model. The dataset, 
derived from the Stanford Dog Dataset, was 
augmented to improve generalization, and 
inference was tested on real-world 
scenarios with a senior Miniature 
Schnauzer. In an effort to interpret the 
model’s “thinking”, GradCAM and 
integrated gradients were employed to 
visualize the model’s decision-making 
process. Our results demonstrate that 
resource-constrained devices can achieve 
high accuracy and usability for real-time pet 
training applications, offering a 
cost-effective alternative to existing 
frameworks. 

I.​ Introduction

Dogs are one of the greatest companions 
to their parents, and they provide a great deal of 
support. While many families wish they could 
bring their pets with them everywhere, that is 
unfortunately not always possible, and we are 
stuck leaving them home alone from 
time-to-time. While most dogs can handle 
themselves admirably, there are a few that 
require more mental stimulation: senior dogs, 
puppies, dogs with separation anxiety, dogs with 
destructive behaviors, etc. In response to this 
need, I have created a lightweight, effective dog 
training application that can automatically 
engage a dog, whether they are in training, 
require the preoccupation to distract them from 
other destructive behaviors, or just enjoy putting 
on a show for a treat. The proposed model uses 
a neural network on an Android platform and 
performs reliably, as will be discussed soon. 
However, this model is suitable for any resource 
constrained platform and can easily be paired 
with a treat dispensing apparatus for the full 
training reinforcement effect. 

The underlying model used for this was 
not arbitrary. Many models were trained and 
compared on the same dataset with the winning 
candidate being the network that offered near 
uniform accuracy across three commands (sit, 



lie, stand) as well as overall model accuracy. We 
will detail each candidate model’s training and 
test accuracy in defense of our ultimate choice. 
Additionally, we use various optimization 
techniques to decrease the model size, making it 
suitable for embedded platforms while 
preserving accuracy for this task. Furthermore, 
we test the model in real-time with a senior 
Miniature Schnauzer to demonstrate its reliability 
beyond just test accuracies. The application 
performance as deployed on the Android 
ecosystem is excellent and exhibits zero lag. ​

Note: base code for this project was made 
available by the authors of [1]. Github citation is 
available in the citations section as reference [8]. 
Additionally, many of the functions were derived 
from lectures from CSU course ECE/CS528 [9]. 

A.​ Related Works

This work was largely extended off the 
efforts of fellow CSU students [1], Stock and 
Cavey. Their platform was built using a more 
powerful embedded platform, NVIDIA’s Jetson 
Nano along with a camera and treat dispensing 
apparatus. While their model performs well, the 
luxury of the Jetson Nano’s onboard GPU is not 
always accessible, motivating some of the 
techniques we have used to construct our own 
model. Other previous works have also focused 
on capturing the behavior of dogs but use 
techniques involving wearable devices [2]; and 
while those have also proven successful, it is not 
very practical to solve the problem at hand. As 
an alternative, Stock and Cavey leverage the 
power of convolutional neural networks, and we 
will as well in a more platform agnostic 
approach. As with Stock and Cavey’s efforts, we 
aim to create the application so that it can be a 

self-contained inference algorithm that does not 
require any outside resources as that is not 
always available and for the sake of resource 
preservation. Since dogs are a demonstrative 
species, convolutional neural networks are well 
suited for such a task, avoiding wearable 
devices. Stock and Cavey have found similar 
research [3] that supports the benefits of 
algorithm-aided pet training, demonstrating that 
the training provided relief for separation 
anxiety-related distress. It is worth noting that the 
work by Mundel et al. [3] made use of 
microphones alongside a camera. However, the 
microphone was used to capture vocalizations, 
another manifestation of distress. Since 
observing the presence of distress is not the 
focus of our work and evidence already exists 
supporting training as a source of comfort for 
distressed dogs, we simply focus on the actual 
behavior presence itself and stick to the camera 
in order to detect the desired behavior. Stock 
and Cavey draw upon previous work to justify 
their use of the Jetson Nano platform, citing 
previous work using the same platform from 
real-time fire detection to autonomous driving 
and sign-language translation. And although 
their model is suitable for low cost platforms like 
the Nano, a portion of our aim was to 
demonstrate that we could do even better by 
restricting ourselves to even more 
resource-constrained platforms, like an Android 
phone. The idea being to demonstrate 
proof-of-concept that the model can perform 
reliably even on theoretically cheaper platforms. 
With all of this in mind, we feel comfortable 
claiming an Android phone is a good proxy for 
cheaper platforms with less resources in this 
work. ​



B.​ Contributions

Our extensions to Stock and Cavey’s 
proposed model include using newer CNN 
networks that were unavailable at the time of 
their work. We also explore various optimizations 
and compression techniques to bolster and 
preserve inference performance while making 
our model suitable for low-cost platforms - 
something that was not done previously. The 
project in its entirety is provided alongside this 
paper and will soon be made available as a 
Github repo. 

II. Dataset Details

The dataset used to train these models 
were largely provided by Stock and Cavey 
themselves who annotated images from the 
Stanford Dog Dataset [4]. Although one of the 
original goals was to supplement those images 
with new hand-labeled instances in hopes of 
improving transfer learning, time did not permit 
any amount of additions, meaningful or not. This 
was disappointing, but the circumstances of my 
group changed and my sole focus was spent on 
fine-tuning the ultimate candidate model. This 
was not a detrimental miss. The original dataset 
was quite large and included a healthy number 
of examples for each type of command. The 
dataset included 20,578 images: 4143 for 
standing, 3038 for sitting, 7090 for lying down, 
and 6307 for undefined positions. Figure 1 
provides a sample of images for each command. 
Only instances of standing, sitting, and lying 
down were used, presenting an issue with 
imbalance classes; but as we will see later, the 
imbalance did not have a material effect on the 
model’s performance. The undefined instances 
were deemed to be too ambiguous or 

context-less for accurate annotation and 
therefore were not used by either Stock and 
Cavey nor this model. 

Each image consisted of customary RGB 
characteristics, the overall dataset contained 120 
unique breeds in a diverse range of image 
quality. Roughly half of the images were between 

Fig. 1: Dataset samples for each command class​

a resolution of 361x333 and 500x453, but the 
diversity of image sizes in the dataset went 
beyond those bounds. As Cavey and Stock point 
out, this allows for downsampled images that 
can still retain much of the original encoded 
information. 

The entire dataset was preprocessed 
using various augmentation before training and 
testing as a means to improve the 
generalizability of our model. The augmenting 
techniques included: random rotations, random 
reflections about its horizontal access, and 
resizing to a uniform 224x224 pixel layout. Given 
the success of our model as well as that of [1], it 



is evident that these augmentation techniques 
were beneficial to generalization. 

III. Experimental Methodology

A.​ Models and Training Details

Like [1], we decided to use a convolution 
neural network as the underlying framework to 
operationalize confirmation of command. Since 
the purpose of our framework is simply to 
determine if a command was successfully 
completed, we felt like a CNN was more than 
adequate to capture the desired effect. RNNs 
were also considered as we felt the ultimate 
product should have a time component 
associated to any command to capture that a 
command was followed and held. However, the 
added benefit of a temporally-based RNN did not 
outweigh the complexity required to implement it. 
Instead, the duration a command was held was 
implemented in the application source code 
itself. The CNN still classifies images as sitting, 
standing, or lying; but it does so as an ensemble 
of images captured over the desired duration of 
the command. As an illustration, the app itself 
captures images of the dog over a user-specified 
period at a rate of 3 FPS. If 90% of the images 
are classified by our CNN as the chosen 
command, the app signals success. Otherwise, it 
signals failure. . 

Multiple models were considered for our 
successor platform, specifically from the newer 
versions of the EfficientNet family 
(EfficientNetV2). These models were chosen 
because [1] uses the original EfficientNet 
(B0-B4) architecture [5]; and although the 
comparisons would not be exactly 
apples-to-apples, it seemed a more appropriate 

comparison than any of the more complex, 
time-consuming Keras models. Variations in data 
preprocessing and augmentation were not 
explored as [1] had previously. This decision was 
justified by the desire to best preserve final 
model comparison with those found by [1]. 

Training took place in a Google Colab 
environment, utilizing their available TPUv-2.8 
accelerator. Specs were not readily published, 
but as of the date of this paper, the system RAM 
and disk space made available to this effort was 
~335GB and ~225GB, respectively. Since the 
new EfficientNetV2 models were of mostly larger 
parameter size than their predecessors, training 
times ranged from 100s/epoch to a shade under 
1400s/epoch. 

B.​ Smartphone and Ecosystem

The chosen embedded device for 
inference in this study was the Motorola Moto G 
Stylus 5G, an android platform smartphone. This 
device came with 4GB of ram, 128 GB of storage 
capacity, and a 48 MP camera resolution, but no 
spec that rivals the Jetson Nano, making it the 
perfect device to demonstrate the suitability of 
our proposed model to low-resource devices. We 
unfortunately were unable to build an apparatus 
to dispense treats upon successful command 
execution as we ran out of time, but it is not 
unreasonable to think that that could be done in 
a straight-forward implementation. As a 
hypothetical example, such an apparatus would 
simply need a binary signal sent to its receiver 
that dispenses the treat mechanically. The binary 
signal would be the signal from the deployment 
platform indicating a successful command. 



C.​ Post-Training Quantization & Other 
Deployed Compression Techniques

 
Finding techniques to shrink our final 

candidate model while preserving its test 
performance was a challenging task. [1] provided 
code scaffolding, but it was clear that aged 
dependencies and libraries meant the code itself 
no longer ran as is, and a number of edits had to 
be made in order to experiment with post-training 
quantization techniques. One of the most 
frustrating challenges was the inclusion of data 
augmentation directly into the proposed model 
from [1]. As a custom layer, it meant that many 
quantization options were off the table. Google’s 
Gemini made some helpful contributions but was 
largely hit-or-miss in its suggestions. 

Ultimately, the best solution was to spin 
out the data augmentation layer as a separate 
function and apply it outside of the model. This 
did smooth quantization application, but it did not 
fix every issue. The EfficientNetV2 family came 
with many unique layers that presented a 
number of problems. And although each problem 
was overcome, it was done so after much 
research over the StackOverflow forums. 

Ultimately, our proposed model went with 
the default quantization techniques (via 
tf.lite.Optimize.Default) without a representative 
dataset, meaning that only weights were 
quantized to 8-bit integers while leaving 
activation functions as is. And while it applied 
pruning and weight clustering, performance was 
best preserved without PCQAT which was 
surprising. These combined efforts ultimately 
shrank our Keras model from roughly 102MB to 
~9MB, a nearly 92% size reduction. Such 
compression had minimal effect on the test 

accuracy as well amounting to <1% drop in 
accuracy (relative to its uncompressed state). 
The model that applied everything plus PCQAT 
actually experienced an increase in accuracy, 
suggesting that it improved generalization; but 
the increase in performance paled in comparison 
to the loss in compression evident in our chosen 
candidate model. For detail, the PCQAT version 
was roughly 32MB in size and had a test 
accuracy of just over 92%. 

IV. Architecture Development

Transfer learning was the primary chosen 
methodology for building our model. This 
decision was based on Stock and Cavey’s 
comments regarding the laborious search for a 
custom model as well as its lackluster 
performance. Additionally, the candidate base 
models used (e.g., EfficientNet and 
EfficientNetV2) were proven to perform well on 
image classification tasks. Given the size of the 
dataset as well as its distinct qualities relative to 
the imagenet dataset, fine-tuning our transfer 
learning efforts made use of the entire network 
rather than a portion. 

For our training efforts, the dataset was 
split into training, validation, and test sets with 
75%, 10%, and 15% of the images, respectively. 
Just like [1], the images were augmented by 
randomly rotating them by +8%, random 
horizontal flips, and image translations to their 
width and height. This was done in an effort to 
improve generalization. Unlike [1], taking the 
data augmentation layer out of the original 
approach by [1] meant that our training times 
were not greatly affected in the same way theirs 
had been. 



A.​ Transfer Learning

As previously stated, this model leaned 
heavily on transfer learning off the EfficientNetV2 
family the same way that [1] did with the original 
EfficientNet family. Not only does this somewhat 
preserve comparability, but it provided an 
opportunity to test the benefits of larger base 
models in terms of accuracy. Since [1] had not 
previously used pruning, weight clustering, or 
PCQAT, it was hypothesized that larger models 
could potentially lead to better (or at least 
comparable) accuracy in a much smaller 
package. All of our candidate base models made 
us of 224x224 images. While Stock and Cavey 
experimented with other resolutions, this project 
only experimented with 224x224 because of the 
time each model took to train. 

Our final candidate model was based on 
the EfficientNetV2B network originally trained on 
imagenet. It exhibited the most uniform 
performance across the three commands at high 
accuracy (see Table 3). The transfer learning 
model was built by initially removing the final 
layer and adding a handful of new layers. The 
additional layers were a global average pooling 
layer, a dense layer using the RELU activation 
function, a dropout layer of 35%, batch 
normalization, and a dense layer with a softmax 
activation function for probability outputs. The 
final model trained using adaptive moment 
estimation to optimize the spar categorical cross 
entropy, which is suited for our task as traditional 
vectors, not one-hot encoded vectors. The 
learning rate used was .00001 over 20 epochs 
and a batch size of 32. 

The results were favorable and primarily 
demonstrated the benefits of various 

compression techniques. The final model of this 
paper achieved a nearly 92% test accuracy, 
including pruning, weight clustering, and tflite 
conversion. This represented only a marginal 
decrease (<.5%) in accuracy relative to the best 
performing model in, EfficientNetB4 [1]. Training 
time was much longer for the proposed model in 
this work relative to [1], but as a one-time cost, 
this is not a huge problem. Our model was 
trained on a single TPU while Stock and Cavey ​

Fig. 2: GradCAM and Integrated Gradients results and insight into model 
“thinking”. “T” represents the ground truth while “Y” is the model 
prediction. ​

had the benefit of multiple GPUs. This likely 
explained the difference in training time (150 vs 
52 minutes, respectively). ​

     
Table 3: Confusion Matrix for the EfficientNetV2B2, which was used as 
the base model for transfer learning. 

V. Model Interpretation

While high test accuracies were achieved, 
the underlying neural network is inscrutable to 
the everyday user possibly detracting from trust 
(in any neural network architecture really) in the 



model itself. To mitigate that opacity, the 
proposed model was evaluated using two 
methods to explain its “thinking”: 
gradient-weighted class activation mapping 
(GradCAM)[6] and integrated gradients [7]. Both 
techniques aid in model transparency by 
studying how input features attribute specific 
predictions. Figure 2 illustrates findings from 
both techniques as features of focus over input 
images from each class. “Integrated gradients 
obtained by accumulating all the gradients along 
a straight line path from a baseline zero-intensity 
image to the input sample” [1]. It appears that 
the EfficientNetV2B2 built model improves on 
feature focus than that suggested by [1]. While 
[1] found that their models focused on individual 
parts of a posture, the model in this work focuses 
on the entire entity when inferring a prediction. 
As a caveat, the lying posture was somewhat 
less exact as focus by our model included the 
space above the entity. This was not the case for 
Stock and Cavey. 

While integrated gradients highlight 
granularity of focus at the pixel-level, “GradCAM 
localizes relevant regions in an input image 
through the activation maps of successive 
convolutional layers using the desired class 
signal and back propagating gradients to 
compute a localization heat map” [1]. In other 
words, GradCAM highlights the area that our 
model found to be most pertinent when making 
predictions. As can be seen in the second row of 
figure 2, the focus of our model is exactly on the 
body of each entity, regardless of position. This 
promising result was supported by the 
observation that sitting postures were more 
vertical than lying postures where the focus 
remained more horizontal. These observations 
support the efficacy of the model in this work as 

demonstrated by these two common neural 
network explanatory techniques results. 

VI. Experiments

Given the project scope, the paper does 
not dive into as many model traits as Stock and 
Cavey. The aim here was to create an 
application that could be used by pet parents to 
train their dog on an economical platform that 
may not have the luxury of high compute 
resources, like the Jetson Nano. As a result, the 
experimental results were primarily focused on 
accuracy characteristics, model size, and 
inference speed last. Inference speed was less 
important in this case as the application here 
would not require the highest FPS over the 
desired command duration. Instead, our 
application uses a modest FPS rate in order to 
reduce platform strain, resulting in zero 
degradation in efficacy or accuracy. 

Experiments were broken up into stages: 
model accuracy results and distributions as well 
as compression technique evaluations. Given 
these criterion of focus, it was determined that 
the models based on EfficientNetV2B2 had a 
high test accuracy characterized by a uniform 
accuracy across commands. The spread of 
validation accuracies between classes was 6.3 
percentage points while the spread of other 
models was in the double digits. Uniform 
accuracy across commands was determined to 
be of importance as the model should be as 
consistent in performance as possible to avoid 
canine confusion and poor training. Model sizes 
ranged from between 9.3 and 102 MBs (refer to 
Table 1 for model comparison details). ​



 
  Table 1: Compression technique effect on model size

Training experiments included varying 
hyperparameter values as well as base models. 
Hyperparameter variations (epochs, batch sizes, 
early stopping delta, patience, and image input 
shapes) all confirmed the observations by [1]/ 
Namely, that the best image input shape was 
224x224, Adam learning rate of .0001 had a 
good tradeoff between training time and model 
conversion, and 20 epochs combined with a 
batch size of 32 led to the highest accuracies. 
Additionally, early stopping was used for 
convenience as well as regularization of all 
models. Cavey and Stock did not use early 
stopping, but the best hyperparameters for our 
use were a minimum delta of .0001 and a 
patience of 5 epochs of no improvement. 

Three primary compression techniques 
were explored post-training of the final candidate 
model: pruning, weight clustering, and 
quantization. For pruning, various initial and final 
sparsity percentages were used, but it was found 
that even aggressive sparsity requirements did 
not materially affect model performance. 
However, due to EfficientNetV2B2’s construction, 
the only pruning that took place was at the final 
dense layers where nearly 75% sparsity was 
achieved. Stackoverflow community users 
suggested using various tools from the PyTorch 
library, but there was little time to add learning 
PyTorch to my model. Regardless, the pruning 
still resulted in an 85% decrease in overall model 
size. Weight clustering was less effective by 
comparison. While the last two layers did 

achieve clustering of 16 and 17 clusters, 
respectively, it contributed nothing to the 
compression of the pruned model. There was 
also a similar story of unclustered weights due to 
the complexity of EfficientNetV2B2. This was an 
unfortunate outcome, but the compression 
achieved so far using pruning was encouraging 
enough to experiment with post-training 
quantization. PCQAT was actually detrimental to 
compression efforts though it did improve test 
accuracy, albeit marginally. Overhead costs 
attributable to PCQAT actually increased the 
model size from 34MB to nearly 104MB. Since 
this was a step in the wrong direction without any 
meaningful benefit (accuracy improvement of 
<1%), PCQAT was skipped. The resulting 
pruned and clustered model was compressed 
into a tflite format and decreased another 73%. 
This combined with pruning shrunk the model 
from 102MB to just over 9MB making this model 
incredibly light weight and suitable for 
smartphone deployment.

With the final tflite model detailed, 
comparisons between models from [1] and this 
model can be made. Table 2 (appendix) 
compares the EfficientNetB(0-4) family with the 
model proposed here. Please note that 
quantization was applied to Stock and Cavey’s 
family of models whereas the model here did 
not. This means that pruning had a meaningful 
impact in achieving our lightweight goals. Even 
more impressive is that EfficientNetV2B2 is 
larger than 60% of the EfficientNetB(0-4) models 
used in [1] yet was still smaller than 73% of the 
model variations in [1], regardless of quantization 
techniques used. Additionally, the techniques 
deployed here actually improved accuracy over 
the best of nearly every EfficientNetB(0-4) model 
highlighted in [1]. Specifically, our final model 



experienced a 91.4% test accuracy while the 
best of [1]’s EfficientNetB(0-4) family topped out 
at 91.2%. Thus, we argue that the new 
EfficientNetV2 family did benefit accuracy 
despite having more parameters to start yet 
through pruning and tflite conversion still 
achieved a model size that beat out the majority 
of its predecessors. Note given the lack of focus 
on inference speed here, FPS was not tested nor 
compared. Again, our goals differed slightly from 
the original work. ​

Furthermore, apart from the Table 3, 
precision, recall, and f1-scores were calculated 
to further support our models efficacy. Table 4 
provides each category. 

      
              Table 4: Precision, Recall, and F1 scores for our model

Precision and recall values indicate that false 
positives and negatives were minimal, and the 
overall F1-score supports those two findings. 

VII. Conclusion

With a likely successor model in hand, we 
have achieved our goals to both shrink the 
model to a size better suited for an even more 
resource-constrained platform than that used in 
[1], like a smartphone. We did our best to keep 
models as comparable as possible though some 
hyperparameters differed from the previous 
work. Unlike the Stock and Cavey, we applied 
pruning and weight clustering techniques, which 
were arguably required given we tested even 
larger base models than used in [1]. Practical 

tests via apps demonstrate that our model works 
exactly as intended, indicating when a dog 
successfully follows a command. With this app, 
pet parents can now rest easy that their pets are 
not bored at home, suffering separation anxiety, 
or resorting to destructive behaviors. At a nearly 
92% accuracy rate, this model beats out the 
majority of its predecessors and at a significantly 
lower memory cost. Aside from a few parameter 
changes for improved training, these results are 
directly attributable to the new techniques used 
in this paper: pruning and weight clustering, 
leveraging new base models for transfer 
learning, and regularization effects. However, 
future work could improve on this model as well. 
Stock and Cavey specifically mention that 
generalization could be improved by 
supplementing the training data with even more 
pictures. Furthermore, these models focus on a 
small subset of commands and could be 
expanded to even more commands (e.g., 
shake). Additionally, an RNN could be a better 
neural network architecture if a user wants to 
cover more dynamic commands (e.g., rolling 
over, turn left, etc). 
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Appendix

Table 2

Note: The models highlighted in blue refer to the models developed in this paper while all other models originated from [1]. Our final, compressed model 
beat out all but two predecessor models. However, the models (EfficientNetB4_fp16 and EfficientNetB4_lite) that did beat ours were ~4x and ~7x the 
size, respectively. 


