
Positive Behavioral Canine Training with Neural Networks and
Transfer Learning Optimized for Resource Constrained Platforms

Dennis Kim
CS 528 Embedded Systems and Machine Learning

Dept. Computer Science
Colorado State University​

Abstract - This paper presents a
lightweight, resource-efficient solution for
reinforcing positive canine behavioral
training using neural networks optimized
for constrained platforms like smartphones.
Building on prior work utilizing
GPU-accelerated devices such as the
Jetson Nano, we extend the approach by
leveraging EfficientNetV2 pre-trained
models, transfer learning, and compression
techniques, including pruning and
quantization, to achieve comparable
performance using fewer resources. The
system classifies canine behaviors (sit,
stand, and lie) with a test accuracy of nearly
92% and a model's size reduced by the
same percentage relative to its
pre-compressed model. The dataset,
derived from the Stanford Dog Dataset, was
augmented to improve generalization, and
inference was tested on real-world
scenarios with a senior Miniature
Schnauzer. In an effort to interpret the
model’s “thinking”, GradCAM and
integrated gradients were employed to
visualize the model’s decision-making
process. Our results demonstrate that
resource-constrained devices can achieve
high accuracy and usability for real-time pet
training applications, offering a
cost-effective alternative to existing
frameworks.

I.​ Introduction

Dogs are one of the greatest companions
to their parents, and they provide a great deal of
support. While many families wish they could
bring their pets with them everywhere, that is
unfortunately not always possible, and we are
stuck leaving them home alone from
time-to-time. While most dogs can handle
themselves admirably, there are a few that
require more mental stimulation: senior dogs,
puppies, dogs with separation anxiety, dogs with
destructive behaviors, etc. In response to this
need, I have created a lightweight, effective dog
training application that can automatically
engage a dog, whether they are in training,
require the preoccupation to distract them from
other destructive behaviors, or just enjoy putting
on a show for a treat. The proposed model uses
a neural network on an Android platform and
performs reliably, as will be discussed soon.
However, this model is suitable for any resource
constrained platform and can easily be paired
with a treat dispensing apparatus for the full
training reinforcement effect.

The underlying model used for this was
not arbitrary. Many models were trained and
compared on the same dataset with the winning
candidate being the network that offered near
uniform accuracy across three commands (sit,

lie, stand) as well as overall model accuracy. We
will detail each candidate model’s training and
test accuracy in defense of our ultimate choice.
Additionally, we use various optimization
techniques to decrease the model size, making it
suitable for embedded platforms while
preserving accuracy for this task. Furthermore,
we test the model in real-time with a senior
Miniature Schnauzer to demonstrate its reliability
beyond just test accuracies. The application
performance as deployed on the Android
ecosystem is excellent and exhibits zero lag. ​

Note: base code for this project was made
available by the authors of [1]. Github citation is
available in the citations section as reference [8].
Additionally, many of the functions were derived
from lectures from CSU course ECE/CS528 [9].

A.​ Related Works

This work was largely extended off the
efforts of fellow CSU students [1], Stock and
Cavey. Their platform was built using a more
powerful embedded platform, NVIDIA’s Jetson
Nano along with a camera and treat dispensing
apparatus. While their model performs well, the
luxury of the Jetson Nano’s onboard GPU is not
always accessible, motivating some of the
techniques we have used to construct our own
model. Other previous works have also focused
on capturing the behavior of dogs but use
techniques involving wearable devices [2]; and
while those have also proven successful, it is not
very practical to solve the problem at hand. As
an alternative, Stock and Cavey leverage the
power of convolutional neural networks, and we
will as well in a more platform agnostic
approach. As with Stock and Cavey’s efforts, we
aim to create the application so that it can be a

self-contained inference algorithm that does not
require any outside resources as that is not
always available and for the sake of resource
preservation. Since dogs are a demonstrative
species, convolutional neural networks are well
suited for such a task, avoiding wearable
devices. Stock and Cavey have found similar
research [3] that supports the benefits of
algorithm-aided pet training, demonstrating that
the training provided relief for separation
anxiety-related distress. It is worth noting that the
work by Mundel et al. [3] made use of
microphones alongside a camera. However, the
microphone was used to capture vocalizations,
another manifestation of distress. Since
observing the presence of distress is not the
focus of our work and evidence already exists
supporting training as a source of comfort for
distressed dogs, we simply focus on the actual
behavior presence itself and stick to the camera
in order to detect the desired behavior. Stock
and Cavey draw upon previous work to justify
their use of the Jetson Nano platform, citing
previous work using the same platform from
real-time fire detection to autonomous driving
and sign-language translation. And although
their model is suitable for low cost platforms like
the Nano, a portion of our aim was to
demonstrate that we could do even better by
restricting ourselves to even more
resource-constrained platforms, like an Android
phone. The idea being to demonstrate
proof-of-concept that the model can perform
reliably even on theoretically cheaper platforms.
With all of this in mind, we feel comfortable
claiming an Android phone is a good proxy for
cheaper platforms with less resources in this
work. ​

B.​ Contributions

Our extensions to Stock and Cavey’s
proposed model include using newer CNN
networks that were unavailable at the time of
their work. We also explore various optimizations
and compression techniques to bolster and
preserve inference performance while making
our model suitable for low-cost platforms -
something that was not done previously. The
project in its entirety is provided alongside this
paper and will soon be made available as a
Github repo.

II. Dataset Details

The dataset used to train these models
were largely provided by Stock and Cavey
themselves who annotated images from the
Stanford Dog Dataset [4]. Although one of the
original goals was to supplement those images
with new hand-labeled instances in hopes of
improving transfer learning, time did not permit
any amount of additions, meaningful or not. This
was disappointing, but the circumstances of my
group changed and my sole focus was spent on
fine-tuning the ultimate candidate model. This
was not a detrimental miss. The original dataset
was quite large and included a healthy number
of examples for each type of command. The
dataset included 20,578 images: 4143 for
standing, 3038 for sitting, 7090 for lying down,
and 6307 for undefined positions. Figure 1
provides a sample of images for each command.
Only instances of standing, sitting, and lying
down were used, presenting an issue with
imbalance classes; but as we will see later, the
imbalance did not have a material effect on the
model’s performance. The undefined instances
were deemed to be too ambiguous or

context-less for accurate annotation and
therefore were not used by either Stock and
Cavey nor this model.

Each image consisted of customary RGB
characteristics, the overall dataset contained 120
unique breeds in a diverse range of image
quality. Roughly half of the images were between

Fig. 1: Dataset samples for each command class​

a resolution of 361x333 and 500x453, but the
diversity of image sizes in the dataset went
beyond those bounds. As Cavey and Stock point
out, this allows for downsampled images that
can still retain much of the original encoded
information.

The entire dataset was preprocessed
using various augmentation before training and
testing as a means to improve the
generalizability of our model. The augmenting
techniques included: random rotations, random
reflections about its horizontal access, and
resizing to a uniform 224x224 pixel layout. Given
the success of our model as well as that of [1], it

is evident that these augmentation techniques
were beneficial to generalization.

III. Experimental Methodology

A.​ Models and Training Details

Like [1], we decided to use a convolution
neural network as the underlying framework to
operationalize confirmation of command. Since
the purpose of our framework is simply to
determine if a command was successfully
completed, we felt like a CNN was more than
adequate to capture the desired effect. RNNs
were also considered as we felt the ultimate
product should have a time component
associated to any command to capture that a
command was followed and held. However, the
added benefit of a temporally-based RNN did not
outweigh the complexity required to implement it.
Instead, the duration a command was held was
implemented in the application source code
itself. The CNN still classifies images as sitting,
standing, or lying; but it does so as an ensemble
of images captured over the desired duration of
the command. As an illustration, the app itself
captures images of the dog over a user-specified
period at a rate of 3 FPS. If 90% of the images
are classified by our CNN as the chosen
command, the app signals success. Otherwise, it
signals failure. .

Multiple models were considered for our
successor platform, specifically from the newer
versions of the EfficientNet family
(EfficientNetV2). These models were chosen
because [1] uses the original EfficientNet
(B0-B4) architecture [5]; and although the
comparisons would not be exactly
apples-to-apples, it seemed a more appropriate

comparison than any of the more complex,
time-consuming Keras models. Variations in data
preprocessing and augmentation were not
explored as [1] had previously. This decision was
justified by the desire to best preserve final
model comparison with those found by [1].

Training took place in a Google Colab
environment, utilizing their available TPUv-2.8
accelerator. Specs were not readily published,
but as of the date of this paper, the system RAM
and disk space made available to this effort was
~335GB and ~225GB, respectively. Since the
new EfficientNetV2 models were of mostly larger
parameter size than their predecessors, training
times ranged from 100s/epoch to a shade under
1400s/epoch.

B.​ Smartphone and Ecosystem

The chosen embedded device for
inference in this study was the Motorola Moto G
Stylus 5G, an android platform smartphone. This
device came with 4GB of ram, 128 GB of storage
capacity, and a 48 MP camera resolution, but no
spec that rivals the Jetson Nano, making it the
perfect device to demonstrate the suitability of
our proposed model to low-resource devices. We
unfortunately were unable to build an apparatus
to dispense treats upon successful command
execution as we ran out of time, but it is not
unreasonable to think that that could be done in
a straight-forward implementation. As a
hypothetical example, such an apparatus would
simply need a binary signal sent to its receiver
that dispenses the treat mechanically. The binary
signal would be the signal from the deployment
platform indicating a successful command.

C.​ Post-Training Quantization & Other
Deployed Compression Techniques

Finding techniques to shrink our final

candidate model while preserving its test
performance was a challenging task. [1] provided
code scaffolding, but it was clear that aged
dependencies and libraries meant the code itself
no longer ran as is, and a number of edits had to
be made in order to experiment with post-training
quantization techniques. One of the most
frustrating challenges was the inclusion of data
augmentation directly into the proposed model
from [1]. As a custom layer, it meant that many
quantization options were off the table. Google’s
Gemini made some helpful contributions but was
largely hit-or-miss in its suggestions.

Ultimately, the best solution was to spin
out the data augmentation layer as a separate
function and apply it outside of the model. This
did smooth quantization application, but it did not
fix every issue. The EfficientNetV2 family came
with many unique layers that presented a
number of problems. And although each problem
was overcome, it was done so after much
research over the StackOverflow forums.

Ultimately, our proposed model went with
the default quantization techniques (via
tf.lite.Optimize.Default) without a representative
dataset, meaning that only weights were
quantized to 8-bit integers while leaving
activation functions as is. And while it applied
pruning and weight clustering, performance was
best preserved without PCQAT which was
surprising. These combined efforts ultimately
shrank our Keras model from roughly 102MB to
~9MB, a nearly 92% size reduction. Such
compression had minimal effect on the test

accuracy as well amounting to <1% drop in
accuracy (relative to its uncompressed state).
The model that applied everything plus PCQAT
actually experienced an increase in accuracy,
suggesting that it improved generalization; but
the increase in performance paled in comparison
to the loss in compression evident in our chosen
candidate model. For detail, the PCQAT version
was roughly 32MB in size and had a test
accuracy of just over 92%.

IV. Architecture Development

Transfer learning was the primary chosen
methodology for building our model. This
decision was based on Stock and Cavey’s
comments regarding the laborious search for a
custom model as well as its lackluster
performance. Additionally, the candidate base
models used (e.g., EfficientNet and
EfficientNetV2) were proven to perform well on
image classification tasks. Given the size of the
dataset as well as its distinct qualities relative to
the imagenet dataset, fine-tuning our transfer
learning efforts made use of the entire network
rather than a portion.

For our training efforts, the dataset was
split into training, validation, and test sets with
75%, 10%, and 15% of the images, respectively.
Just like [1], the images were augmented by
randomly rotating them by +8%, random
horizontal flips, and image translations to their
width and height. This was done in an effort to
improve generalization. Unlike [1], taking the
data augmentation layer out of the original
approach by [1] meant that our training times
were not greatly affected in the same way theirs
had been.

A.​ Transfer Learning

As previously stated, this model leaned
heavily on transfer learning off the EfficientNetV2
family the same way that [1] did with the original
EfficientNet family. Not only does this somewhat
preserve comparability, but it provided an
opportunity to test the benefits of larger base
models in terms of accuracy. Since [1] had not
previously used pruning, weight clustering, or
PCQAT, it was hypothesized that larger models
could potentially lead to better (or at least
comparable) accuracy in a much smaller
package. All of our candidate base models made
us of 224x224 images. While Stock and Cavey
experimented with other resolutions, this project
only experimented with 224x224 because of the
time each model took to train.

Our final candidate model was based on
the EfficientNetV2B network originally trained on
imagenet. It exhibited the most uniform
performance across the three commands at high
accuracy (see Table 3). The transfer learning
model was built by initially removing the final
layer and adding a handful of new layers. The
additional layers were a global average pooling
layer, a dense layer using the RELU activation
function, a dropout layer of 35%, batch
normalization, and a dense layer with a softmax
activation function for probability outputs. The
final model trained using adaptive moment
estimation to optimize the spar categorical cross
entropy, which is suited for our task as traditional
vectors, not one-hot encoded vectors. The
learning rate used was .00001 over 20 epochs
and a batch size of 32.

The results were favorable and primarily
demonstrated the benefits of various

compression techniques. The final model of this
paper achieved a nearly 92% test accuracy,
including pruning, weight clustering, and tflite
conversion. This represented only a marginal
decrease (<.5%) in accuracy relative to the best
performing model in, EfficientNetB4 [1]. Training
time was much longer for the proposed model in
this work relative to [1], but as a one-time cost,
this is not a huge problem. Our model was
trained on a single TPU while Stock and Cavey ​

Fig. 2: GradCAM and Integrated Gradients results and insight into model
“thinking”. “T” represents the ground truth while “Y” is the model
prediction. ​

had the benefit of multiple GPUs. This likely
explained the difference in training time (150 vs
52 minutes, respectively). ​

Table 3: Confusion Matrix for the EfficientNetV2B2, which was used as
the base model for transfer learning.

V. Model Interpretation

While high test accuracies were achieved,
the underlying neural network is inscrutable to
the everyday user possibly detracting from trust
(in any neural network architecture really) in the

model itself. To mitigate that opacity, the
proposed model was evaluated using two
methods to explain its “thinking”:
gradient-weighted class activation mapping
(GradCAM)[6] and integrated gradients [7]. Both
techniques aid in model transparency by
studying how input features attribute specific
predictions. Figure 2 illustrates findings from
both techniques as features of focus over input
images from each class. “Integrated gradients
obtained by accumulating all the gradients along
a straight line path from a baseline zero-intensity
image to the input sample” [1]. It appears that
the EfficientNetV2B2 built model improves on
feature focus than that suggested by [1]. While
[1] found that their models focused on individual
parts of a posture, the model in this work focuses
on the entire entity when inferring a prediction.
As a caveat, the lying posture was somewhat
less exact as focus by our model included the
space above the entity. This was not the case for
Stock and Cavey.

While integrated gradients highlight
granularity of focus at the pixel-level, “GradCAM
localizes relevant regions in an input image
through the activation maps of successive
convolutional layers using the desired class
signal and back propagating gradients to
compute a localization heat map” [1]. In other
words, GradCAM highlights the area that our
model found to be most pertinent when making
predictions. As can be seen in the second row of
figure 2, the focus of our model is exactly on the
body of each entity, regardless of position. This
promising result was supported by the
observation that sitting postures were more
vertical than lying postures where the focus
remained more horizontal. These observations
support the efficacy of the model in this work as

demonstrated by these two common neural
network explanatory techniques results.

VI. Experiments

Given the project scope, the paper does
not dive into as many model traits as Stock and
Cavey. The aim here was to create an
application that could be used by pet parents to
train their dog on an economical platform that
may not have the luxury of high compute
resources, like the Jetson Nano. As a result, the
experimental results were primarily focused on
accuracy characteristics, model size, and
inference speed last. Inference speed was less
important in this case as the application here
would not require the highest FPS over the
desired command duration. Instead, our
application uses a modest FPS rate in order to
reduce platform strain, resulting in zero
degradation in efficacy or accuracy.

Experiments were broken up into stages:
model accuracy results and distributions as well
as compression technique evaluations. Given
these criterion of focus, it was determined that
the models based on EfficientNetV2B2 had a
high test accuracy characterized by a uniform
accuracy across commands. The spread of
validation accuracies between classes was 6.3
percentage points while the spread of other
models was in the double digits. Uniform
accuracy across commands was determined to
be of importance as the model should be as
consistent in performance as possible to avoid
canine confusion and poor training. Model sizes
ranged from between 9.3 and 102 MBs (refer to
Table 1 for model comparison details). ​

 Table 1: Compression technique effect on model size

Training experiments included varying
hyperparameter values as well as base models.
Hyperparameter variations (epochs, batch sizes,
early stopping delta, patience, and image input
shapes) all confirmed the observations by [1]/
Namely, that the best image input shape was
224x224, Adam learning rate of .0001 had a
good tradeoff between training time and model
conversion, and 20 epochs combined with a
batch size of 32 led to the highest accuracies.
Additionally, early stopping was used for
convenience as well as regularization of all
models. Cavey and Stock did not use early
stopping, but the best hyperparameters for our
use were a minimum delta of .0001 and a
patience of 5 epochs of no improvement.

Three primary compression techniques
were explored post-training of the final candidate
model: pruning, weight clustering, and
quantization. For pruning, various initial and final
sparsity percentages were used, but it was found
that even aggressive sparsity requirements did
not materially affect model performance.
However, due to EfficientNetV2B2’s construction,
the only pruning that took place was at the final
dense layers where nearly 75% sparsity was
achieved. Stackoverflow community users
suggested using various tools from the PyTorch
library, but there was little time to add learning
PyTorch to my model. Regardless, the pruning
still resulted in an 85% decrease in overall model
size. Weight clustering was less effective by
comparison. While the last two layers did

achieve clustering of 16 and 17 clusters,
respectively, it contributed nothing to the
compression of the pruned model. There was
also a similar story of unclustered weights due to
the complexity of EfficientNetV2B2. This was an
unfortunate outcome, but the compression
achieved so far using pruning was encouraging
enough to experiment with post-training
quantization. PCQAT was actually detrimental to
compression efforts though it did improve test
accuracy, albeit marginally. Overhead costs
attributable to PCQAT actually increased the
model size from 34MB to nearly 104MB. Since
this was a step in the wrong direction without any
meaningful benefit (accuracy improvement of
<1%), PCQAT was skipped. The resulting
pruned and clustered model was compressed
into a tflite format and decreased another 73%.
This combined with pruning shrunk the model
from 102MB to just over 9MB making this model
incredibly light weight and suitable for
smartphone deployment.

With the final tflite model detailed,
comparisons between models from [1] and this
model can be made. Table 2 (appendix)
compares the EfficientNetB(0-4) family with the
model proposed here. Please note that
quantization was applied to Stock and Cavey’s
family of models whereas the model here did
not. This means that pruning had a meaningful
impact in achieving our lightweight goals. Even
more impressive is that EfficientNetV2B2 is
larger than 60% of the EfficientNetB(0-4) models
used in [1] yet was still smaller than 73% of the
model variations in [1], regardless of quantization
techniques used. Additionally, the techniques
deployed here actually improved accuracy over
the best of nearly every EfficientNetB(0-4) model
highlighted in [1]. Specifically, our final model

experienced a 91.4% test accuracy while the
best of [1]’s EfficientNetB(0-4) family topped out
at 91.2%. Thus, we argue that the new
EfficientNetV2 family did benefit accuracy
despite having more parameters to start yet
through pruning and tflite conversion still
achieved a model size that beat out the majority
of its predecessors. Note given the lack of focus
on inference speed here, FPS was not tested nor
compared. Again, our goals differed slightly from
the original work. ​

Furthermore, apart from the Table 3,
precision, recall, and f1-scores were calculated
to further support our models efficacy. Table 4
provides each category.

 Table 4: Precision, Recall, and F1 scores for our model

Precision and recall values indicate that false
positives and negatives were minimal, and the
overall F1-score supports those two findings.

VII. Conclusion

With a likely successor model in hand, we
have achieved our goals to both shrink the
model to a size better suited for an even more
resource-constrained platform than that used in
[1], like a smartphone. We did our best to keep
models as comparable as possible though some
hyperparameters differed from the previous
work. Unlike the Stock and Cavey, we applied
pruning and weight clustering techniques, which
were arguably required given we tested even
larger base models than used in [1]. Practical

tests via apps demonstrate that our model works
exactly as intended, indicating when a dog
successfully follows a command. With this app,
pet parents can now rest easy that their pets are
not bored at home, suffering separation anxiety,
or resorting to destructive behaviors. At a nearly
92% accuracy rate, this model beats out the
majority of its predecessors and at a significantly
lower memory cost. Aside from a few parameter
changes for improved training, these results are
directly attributable to the new techniques used
in this paper: pruning and weight clustering,
leveraging new base models for transfer
learning, and regularization effects. However,
future work could improve on this model as well.
Stock and Cavey specifically mention that
generalization could be improved by
supplementing the training data with even more
pictures. Furthermore, these models focus on a
small subset of commands and could be
expanded to even more commands (e.g.,
shake). Additionally, an RNN could be a better
neural network architecture if a user wants to
cover more dynamic commands (e.g., rolling
over, turn left, etc).

References​

1.​ J. Stock and T. Cavey, “Who’s a Good
Boy? Reinforcing Canine Behavior using
Machine Learning in Real-Time,” arXiv
(Cornell University), Jan. 2021, [Online].
Available:
https://arxiv.org/abs/2101.02380v1​

2.​ J. Majikes et al., “Balancing noise
sensitivity, response latency, and
posture accuracy for a
computer-assisted canine posture
training system,” International Journal of
Human-Computer Studies, vol. 98, pp.
179–195, Apr. 2016, doi:
10.1016/j.ijhcs.2016.04.010.​

3.​ P. Mundell, S. Liu, N. A. Guérin, and J.
M. Berger, “An automated
behavior-shaping intervention reduces
signs of separation anxiety–related
distress in a mixed-breed dog,” Journal
of Veterinary Behavior, vol. 37, pp.
71–75, May 2020, doi:
10.1016/j.jveb.2020.04.006.​

4.​ A. Khosla, N. Jayadevaprakash, B. Yao,
and L. Fei-Fei, “Novel dataset for
fine-grained image categorization,” in First
Workshop on Fine-Grained Visual
Categorization, IEEE Conference on
Computer Vision and Pattern Recognition,
Colorado Springs, CO, June 2011.​

5.​ M. Tan and Q. V. Le, “Efficientnet:
Rethinking model scaling for convolutional
neural networks,” ArXiv, vol.
abs/1905.11946, 2019.​

6.​ R. R. Selvaraju, A. Das, R. Vedantam, M.
Cogswell, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep
networks via gradient-based localization,”
International Journal of Computer Vision,
vol. 128, pp. 336–359, 2019.​

7.​ M. Sundararajan, A. Taly, and Q. Yan,
“Axiomatic attribution for deep networks,”
in ICML, 2017.​

8.​ J. Stock and T. Cavey,
“canine-embedded-ml,” Github, Jan.
2021, [Online]. Available:
https://github.com/stockeh/canine-embed
ded-ml​

9.​ S. Pasricha. (2024). ECE/CS 525 Module
4: Software Model Optimizations
[PowerPoint Slides]. Available:
https://colostate.instructure.com/courses/1
91420/module

https://github.com/stockeh/canine-embedded-ml
https://github.com/stockeh/canine-embedded-ml
https://colostate.instructure.com/courses/191420/modules
https://colostate.instructure.com/courses/191420/modules

Appendix

Table 2

Note: The models highlighted in blue refer to the models developed in this paper while all other models originated from [1]. Our final, compressed model
beat out all but two predecessor models. However, the models (EfficientNetB4_fp16 and EfficientNetB4_lite) that did beat ours were ~4x and ~7x the
size, respectively.

